National Repository of Grey Literature 20 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Aplication of SPM in study and modification of ultrathin films Pt, Co and graphene
Lišková, Zuzana ; Červenka,, Jiří (referee) ; Bartošík, Miroslav (advisor)
This diploma thesis deals with the preparation of the very thin films and their investigation by scanning probe microscopy methods. The ultrathin films of Pt on Pt(111) were created by pulsed laser deposition and the ultrathin films of Co on Pt(111) were deposited by thermal evaporation. The coverage of the substrate was much smaller than one monolayer (in order of hundredths of monolayer). The nucleation theory was verified by these experiments using so-called Onset method. Further graphene sheets were prepared on layer of Si/SiO2 by the mechanical exfoliation from the graphite crystal. The fabricated graphene sheets were studied by micro-Raman spectroscopy, microreflectometry, atomic force microscopy and similar techniques. These methods proved the thinnest graphite layers were consisted of two graphene monolayers.
Studium fyzikálních vlastostí magnetických oxidů spektroskopickými metodami
Zahradník, Martin ; Veis, Martin (advisor) ; Kouřil, Karel (referee)
Two groups of magnetic oxides were investigated in this thesis. Thin films of La2/3Sr1/3MnO3 (LSMO) deposited by pulsed laser deposition (PLD) on SrTiO3 (STO) substrates were characterized by polar and longitudinal magneto-optical (MO) Kerr spectroscopy. Experimental results were compared to theoretical calculations based on the transfer matrix formalism. A very good agreement between experimental and theoretical data revealed high magnetic ordering down to 5 nm of film thickness as well as a mechanism of suppression of double exchange interaction near the LSMO/STO interface. Magnetically doped Ce1-xCoxO2-δ films deposited by PLD on MgO (x = 0.05 and 0.10) and oxidized Si (x = 0.20) substrates were studied by combination of spectroscopic ellipsometry and MO Faraday and Kerr spectroscopy. Both diagonal and off-diagonal permittivity tensor components were obtained and verified by theoretical calculations confronted with experimental data. Diagonal spectra revealed two optical transitions from oxygen to cerium states. Off-diagonal spectra revealed two paramagnetic transitions involving cobalt ions. An essential influence of cobalt doping on the resulting ferromagnetic properties of CeO2 was observed.
Magnetooptical spectroscopy of La2/3Sr1/3MnO3 ultrathin films
Zahradník, Martin ; Veis, Martin (advisor) ; Postava, Kamil (referee)
High quality La2/3Sr1/3MnO3 (LSMO) ultrathin layers are of interest for applications in magnetic sensors and spintronic devices due to colossal magnetoresistance of these materials. LSMO films studied in this thesis were grown by pulsed laser deposition on SrTiO3 substrates. The deposition at low oxygen pressures with the use of a beam homogenizer leads to the high quality LSMO films. The film thickness ranges from 5,0 to 103,9 nm. Magnetooptical (MO) spectrometer based on azimuth modulation was used and spectra of MO Kerr effect in polar and longitudinal configuration were obtained. All the spectra display features typical for LSMO films, including the thinnest 5 nm thick film. MO Kerr effect observed in this film reflects high magnetic ordering even at such low thickness. All the spectra manifest high quality of the LSMO films prepared with the use of the beam homogenizer.
Optical and magneto-optical studies of ferrimagnetic garnets for photonic and spintronic applications
Beran, Lukáš ; Veis, Martin (advisor) ; Dubroka, Adam (referee) ; Výborný, Karel (referee)
Title: Optical and magneto-optical studies of ferrimagnetic garnets for photonic and spintronic applications Author: RNDr. Lukáš Beran Department: Intitute of Physics of Charles University Supervisor: RNDr. Martin Veis, PhD., Institute of Physics of Charles University Abstract: This doctoral thesis is devoted to fabrication and systematic char- acterization of physical properties of thin films of iron garnets with potential applications in photonic and spintronic devices. Investigated samples were pre- pared by metallo-organic decomposition and pulsed laser deposition. The study was focused on structural and magnetic characterizaiton along with optical and magneto-optical properties. Obtained experimental results were further con- fronted with theoretical calculations. The application potencial of garnets for photonic devices was discussed based on determined Figure of Merit (Faraday rotation to optical loss ratio). High values were achieved for single crystal thin film of Ce doped yttrium iron garnet on galium gadolinium garnet substrate as well as for pollycrystalline Bi doped yttrium iron garned on silicon substrate. Furthermore, new rare-earth garnets were prepared with attempt to achieve per- pendicular magnetic anisotropy of these film. This was achieved for three di erent materials, which were not...
Studium fyzikálních vlastností magnetických oxidů spektroskopickými metodami
Zahradník, Martin ; Veis, Martin (advisor)
Two groups of magnetic oxides were investigated in this thesis. Thin films of La2/3Sr1/3MnO3 (LSMO) deposited by pulsed laser deposition (PLD) on SrTiO3 (STO) substrates were characterized by polar and longitudinal magneto-optical (MO) Kerr spectroscopy. Experimental results were compared to theoretical calculations based on the transfer matrix formalism. A very good agreement between experimental and theoretical data revealed high magnetic ordering down to 5 nm of film thickness as well as a mechanism of suppression of double exchange interaction near the LSMO/STO interface. Magnetically doped Ce1-xCoxO2-δ films deposited by PLD on MgO (x = 0.05 and 0.10) and oxidized Si (x = 0.20) substrates were studied by combination of spectroscopic ellipsometry and MO Faraday and Kerr spectroscopy. Both diagonal and off-diagonal permittivity tensor components were obtained and verified by theoretical calculations confronted with experimental data. Diagonal spectra revealed two optical transitions from oxygen to cerium states. Off-diagonal spectra revealed two paramagnetic transitions involving cobalt ions. An essential influence of cobalt doping on the resulting ferromagnetic properties of CeO2 was observed.
Characterization and focusing of capillary-discharge XUV-laser beam for purposes of thin-film deposition
Pira, Peter ; Wild, Jan (advisor)
Title: Characterization and focusing of capillary-discharge XUV-laser beam for purposes of thin-film deposition Author: Peter Pira Department: Department of Surface and Plasma Science Supervisor: doc. RNDr. Jan Wild, CSc., Department of Surface and Plasma Science Abstract: The paper deals with the first results of the interaction of a desk-top high repetition rate XUV laser (wavelength of 46.9 nm) radiation with materials suitable for optoelectronics, in particular the ionic crystals CsI, LiF, etc. Using surface physics methods (AFM, DIC Normanski microscopy) pulse laser imprints were investigated. Based on the results obtained, general information on the nature of ablation and desorption was obtained, which were compared with the results of the XUV-ABLATOR modified code modeling. Plasma arising from ablation was examined by a modified Langmuir probe system. The main result is the pulse laser deposition of thin films of Bi and CsI. Keywords: ablation, Pulsed Laser Deposition, XUV laser
Characterization and focusing of capillary-discharge XUV-laser beam for purposes of thin-film deposition
Pira, Peter ; Wild, Jan (advisor)
Title: Characterization and focusing of capillary-discharge XUV-laser beam for purposes of thin-film deposition Author: Peter Pira Department: Department of Surface and Plasma Science Supervisor: doc. RNDr. Jan Wild, CSc., Department of Surface and Plasma Science Abstract: The paper deals with the first results of the interaction of a desk-top high repetition rate XUV laser (wavelength of 46.9 nm) radiation with materials suitable for optoelectronics, in particular the ionic crystals CsI, LiF, etc. Using surface physics methods (AFM, DIC Normanski microscopy) pulse laser imprints were investigated. Based on the results obtained, general information on the nature of ablation and desorption was obtained, which were compared with the results of the XUV-ABLATOR modified code modeling. Plasma arising from ablation was examined by a modified Langmuir probe system. The main result is the pulse laser deposition of thin films of Bi and CsI. Keywords: ablation, Pulsed Laser Deposition, XUV laser
Optical and magneto-optical studies of ferrimagnetic garnets for photonic and spintronic applications
Beran, Lukáš ; Veis, Martin (advisor) ; Dubroka, Adam (referee) ; Výborný, Karel (referee)
Title: Optical and magneto-optical studies of ferrimagnetic garnets for photonic and spintronic applications Author: RNDr. Lukáš Beran Department: Intitute of Physics of Charles University Supervisor: RNDr. Martin Veis, PhD., Institute of Physics of Charles University Abstract: This doctoral thesis is devoted to fabrication and systematic char- acterization of physical properties of thin films of iron garnets with potential applications in photonic and spintronic devices. Investigated samples were pre- pared by metallo-organic decomposition and pulsed laser deposition. The study was focused on structural and magnetic characterizaiton along with optical and magneto-optical properties. Obtained experimental results were further con- fronted with theoretical calculations. The application potencial of garnets for photonic devices was discussed based on determined Figure of Merit (Faraday rotation to optical loss ratio). High values were achieved for single crystal thin film of Ce doped yttrium iron garnet on galium gadolinium garnet substrate as well as for pollycrystalline Bi doped yttrium iron garned on silicon substrate. Furthermore, new rare-earth garnets were prepared with attempt to achieve per- pendicular magnetic anisotropy of these film. This was achieved for three di erent materials, which were not...
Dynamic control of magnetization for spintronic applications studied by magneto-optical methods
Zahradník, Martin ; Veis, Martin (advisor) ; Herranz, Gervasi (referee) ; Legut, Dominik (referee)
Two important mechanisms in preparation of ultrathin films of magnetic oxides were systematically investigated in this work. First, influence of epitaxial strain on resulting magneto-optical properties of La2/3Sr1/3MnO3 (LSMO) ultrathin films was studied. The investigated films were grown by pulsed laser deposition on four different substrates, providing a broad range of induced epitaxial strains. Magnetic properties were found to deteriorate with increasing value of the epitaxial strain, as expected due to the unit cell distortion increasingly deviating from the bulk and effect of the magnetically inert layer. A combination of spectroscopic ellipsometry and magneto-optical Kerr effect spectroscopy was used to determine spectra of the diagonal and off-diagonal elements of permittivity tensor. The off-diagonal elements confirmed presence of two previously reported electronic transitions in spectra of all films. Moreover, they revealed another electronic transition around 4.3 eV only in spectra of films grown under compressive strain. We proposed classification of this transition as crystal field paramagnetic Mn t2g → eg transition, which was further supported by ab initio calculations. A key role of strain in controlling electronic structure of ultrathin perovskite films was demonstrated. Dynamic application of...
Characterization and focusing of capillary-discharge XUV-laser beam for purposes of thin-film deposition
Pira, Peter ; Wild, Jan (advisor) ; Čuba, Václav (referee) ; Tichý, Milan (referee)
Title: Characterization and focusing of capillary-discharge XUV-laser beam for purposes of thin-film deposition Author: Peter Pira Department: Department of Surface and Plasma Science Supervisor: doc. RNDr. Jan Wild, CSc., Department of Surface and Plasma Science Abstract: The paper deals with the first results of the interaction of a desk-top high repetition rate XUV laser (wavelength of 46.9 nm) radiation with materials suitable for optoelectronics, in particular the ionic crystals CsI, LiF, etc. Using surface physics methods (AFM, DIC Normanski microscopy) pulse laser imprints were investigated. Based on the results obtained, general information on the nature of ablation and desorption was obtained, which were compared with the results of the XUV-ABLATOR modified code modeling. Plasma arising from ablation was examined by a modified Langmuir probe system. The main result is the pulse laser deposition of thin films of Bi and CsI. Keywords: ablation, Pulsed Laser Deposition, XUV laser

National Repository of Grey Literature : 20 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.